
U"': I"-a COPy

rop

In IN PROGRAMMING

N
C\I Technical Report AlP - 135

Quanfeng Wu and John R. Anderson
Department of Psychology

Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

1114' Artificiial Iillellio-enc•e

DTIC
•AuG2A 4 " G 9, 4 "

fil 40i ~ . ~I t(

11f Ocuhlnw l

ISULAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

STRATEGY CHOICE AND CHANGE
IN PROGRAMMING

Technical Report AIP - 135

Quanfeng Wu and John R. Anderson
Department of Psychology

,..,•. Mellon University
Pittsburgh, PA 15213 U.S.A.

May 1, 1990

DTIC

This research was partially supported by the Computer Science Division, Office
of Naval Research, under contract number N00014-86-K-0678. Reproduction in
whole or in part is permitted for any purpose of the United States Government.
Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE
pi REORT SECURlTY C.ASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified

2 A SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIICAAnON/DOWNGRADING SCHEDULE Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NuMSERMS) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

AIP - 135

Go NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Carnegie Mellon University (if spdcae) Computer Sciences Division

Office of Naval Research (Code 1133)

6r. ADDRESS (Gly. Stote, and ZIP Code) 7b ADDRESS (City, State, And ZIP COCe)
Department of Psychology 800 N. Quincy Street
Pittsburgh, PA 15213 Arlington, VA 22217-5000

$a. NAME OF FUNDING/SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If pplicabit) N00014-86-K-0678

Same as Monitoring Organizatio

c ADDRESS (City, State and ZIP Code) 10 SOURCE OF FUNDING NUMBERS p40005ub201/7-4-86
PROGRAM PROJECT TASK WORK UNIT
ELEMEN T NO NO NO ACCESSION NO

N/A N/A N/A N/A

11 TITLE (inc.ude Security Chlssificaton)

Strategy choice and cha-ge in programming

12 PERSONAL AUTHOR(S) Quanfeng Wu and John R. Anderson

13a TYPE OF REPORT 113b TIME COVERED 14 DATE OF REPORT (Year, hionrt, Day) IS PAGE CCUNT
Technical I FROMffjq6Set TO 1___t4

16 SUPPLEMENTARY NOTATION

7 COSATI CODES 18 SuBjECT TERMS (Continua on reverse it necessary and identify by block number)
FIELD GROUP SUB-GROUP PASCAL programming languages

human-computer interaction

19 ABSTRACT (Continue on reverse if necessary a•d ident•fy by block number)

SEE REVERSE SIDE

S20&1STRIBUTIONIAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
LJUNCLASSIFIEDIUNLIMITED EN SAME AS RPT C DTIC USERS

22a -AME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 2Zc. OFFICE SYMBOL
Dr. Alan L. Meyrowitz (202) 696-4302 N00014

DO FORM 1473, MA UiR 63 APR edition may b us*d ultpi exhowsted. SEC0 R:TY CLASIFICATION OF: THI PAGE

All Other editions are Loie.nT
SFH.

Unclassified

This research studied iterative or looping strategy choices and changes, especially between the

"while-do" and "repeat-until" looping constructs in the PASCAL programming language. The

empirical results from the first experiment, in which subjects were free to choose between the two

looping alternatives, indicated that most of PASCAL programmers are quite sensitive to the nature of the

problems being solved and adaptable in choosing appropriate looping strategies. Another two

experiments weie peiformed in which subjects were either forced or induced to use one of the two

looping strategies. These two experiments indicated that subjects are quite tenacious in using the

appropriate strategy and their performance deteriorates when they are forced to use a different strategy.

These results are consistent with results of Reder (1987, 1988), Reder and Ritter (1990), and Siegler

and Jenkins (1989) on strategy selection in other domains and with other populationr

Strategy Choice and Change

in Programming

Quanfeng Wu & John R. Anderson

Department of Psychology

Carnegie Mellon University

Pittsburgh, PA 15213

May 1, 1990
Accession lor-

NTIS GCA&I
DTI'- I AF B-
uJl Iýi 111) oun cl~l ed

c•:: tl t at on -- --- --

~s ¶ it*,? CO(403

IA-1y
Di 5""• }" I on

Iterative Strategy Choices and Changes

in PASCAL Programming

QUANFENG WU AND JOHN R. ANDERSON

Carnegie Mellon University

This research studied iterative or looping strategy choices and changes, especially betv'een t!e

"while-do" and "repeat-until" looping constructs in the PASCAL programming language. The

empirical results from the first experiment, in which subjects were free to choose between the two

looping alternatives, indicated that most of PASCAL programmers are quite sensitive to the nature of the

problems being solved and adaptable in choosing appropriate looping strategies. Another two

experiments were performed in which subject6 were either forced or induced to use one of the two

looping strategies. These two experiments indicated that subjects are quite tenacious in using the

appropriate strategy and their performance deteriorates when they are forced to use a different strategy.

These results are consistent with results of Reder (1987, 1988), Reder and Ritter (1990), and Siegler

and Jenkins (1989) on strategy selection in other domains and with other populations.

We are very grateful to Drs. Herbert Simon and Kurt Van.Lehn, and to many graduate students in

the Department of Psychology at CMU, for their comments on various portions of this work. Reprint

requests should be sent to John R. Anderson, Department of Psychology, Carnegie Mellon University,

Pittsburgh, PA 15213.

INTRODUCTION

The issue of cognitive strategy choice is an important research topic in cognitive

psychology in that it is both theoretica31y inieresting and pragmatically valuable. It is

theoretically interesting because studying strategy choices and changes might help

cognitive psychologists gain some insights into the underlying mechanisms of human

problem solving or other cognitive processes. It is practically meaningful in that a great

deal nf real-world problem solving involves the problem of choosing a good strategy. In

fact, there has already been a large body of research conducted to address the issue of

cognitive strategy choices and changes in various domains of cognition, ranging from

memory retrieval (Reder, 1987: 1988), through solving some laboratory problems such as

number series extrapolation tasks, the Carnival and Missionary problem, and the Tower of

Hanoi puzzle (Simon & Reed, 1976; Simon, 1978; Ruiz, 1989), to doing arithmetic

calculations (Reder & Ritter, 1990; Siegler & Shrager, 1984; Siegler & Jenkins, 1989), and

performing some other more ecologically valid cognitive tasks such as programming (Gray

& Anderson,1987; Katz & Anderson, 1988; Pennington, 1987; Soloway, Bonar, & Ehrlich,

1983; Visser, 1987). The research to be reported in this paper is about PASCAL

programmer's strategy choices and changes in writing iterative or looping programs.

Three experiments were conducted for this study. The first experiment adopted a

simple design in which subjects were free to choose between the two indefinite looping

strategies, that is, to use either the "while-do" or "repeat-until" construct. In the second

and third experiments, subjects were either forced or induced to use one of these two

looping alternatives. These three experiments were designed to yield some convergent

evidence for testing the hypothesis that most PASCAL programmers are adaptable to the

nature of the problems while choosing iterative strategies. However, in order to understand

what this statement means, we have to discuss first of all the issue of what defines the

nature of a problem and what defines a good strategy for that problem. In the following

section, we will review some previous research conducted by other investigators on

3

cognitive strategy choices and changes in the domain of PASCAL iterative programming

and we will analyze three types of iterative constructs offered in PASCAL. Following that,

the three experiments of this study will be reported and discussed.

COGNITIVE STRATEGY AND ITERATIVE PROGRAMMWNG

The Study of Cognitive Strategy in Programming

Particularly relevant to our present study is the research done by Soloway and his

colleagues (Soloway, et al., 1982; Soloway, 1983). Their study was focused on the

"cognitive fit" between the most naturally chosen strategies and the looping constructs

provided by the programming language in use. They used a particular problem of iterative

programming -- a counting and averaging problem (which was also used as one of the

testing problems in this study) -- and found that their subjects overwhelmingly prefer a

READ/PROCESS strategy over a PROCESS/READ strategy on that problem. By

manipulating different programming languages for subjects to use, their results also

indicate that the accuracy of the program to be written is enhanced if it is written in a

language which facilitates the preferred strategy for the problem. One of our purposes in

this study was to try to replicate the results of the above mentioned study from a different

perspective and with more problems. We will contrast our results with theirs in the first

experiment to be reported in the next section.

Iterative Strategies in PASCAL Programming

In the domain of computer programming languages, probably PASCAL is the best

known conventional programming language in that it is the first advocated and widely

accepted structured programming language (Jensen & Wirth, 1974). By now, PASCAL is

not only widely used in the computer community but also globally accepted as a tool for

4

teaching structured programming as a good methodology and style of programming.

With respect to iterative structures, there are three types of iterative or looping

constructs furnished by PASCAL -- that is, the for-to-do, while-do and repeat-until

statements or constructs. (Henceforth in the paper they will be referred as F-, W- and R-

constructs.) The first one is only used in definite looping situations where the number of

iterations is known before the iterative part of the program is actually executed. However,

the other two may be used in definite as well as indefinite looping cases where the number

of iterations may only be dynamically determined by the execution of the looping part.

These three types of looping constructs are illustrated by their flowcharts in Figure 1.

Insert Figure 1 about here.

The difference between the F-construct and the rest is more obvious than the

difference between the two indefinite looping constructs. Considering the symmetry of the

two indefinite looping constructs, they were chosen to be the subject matter focused on in

this research. Note that, for the W-construct, the termination condition of iteration is always

tested before the execution of the iterative part so that the iteration may be executed zero

times (not executed at all). On the other hand, for R-construct, the test for termination

occurs at the exit of the iterative part so that the iteration will be executed at least once.

That is the fundamental difference between these two indefinite looping constructs and in

fact is the principle typically taught for choosing between them.

To implement any looping program, either the W- or R-construct can be selected and

applied. However, in certain cases, choosing the W-construct would result in a more

concise and well-structured program than it would be if R-construct is chosen; and in some

other cases, it is just the other way around. A general way of converting a W-constructed

5

program to a R-constructed. and vice versa, is illustrated in Figure 2 (there are other ways

that may be more natural of converting from one construct to the other; for instance, see the

examples given in Table 1). From this illustration we can see that if an iterative program is

appropriate to be implemented in W-construct then it usually would take more statements to

be implemented in R-construct; and the same is for the case from R- to W-construct

transformation. An exemplar problem which is more suitable to be programmed in W-

construct is given in Table 1 (Hereafter, this type of problem will be referred as W-

problems), and another exemplar problem which is more natural to be programmed in R-

construct is shown in Table 2 (one of R-problems). (For the example given in Table 1,

instead of following the general way of converting W-constructed program to that in R-

construct as illustrated in Figure 2, we have an If-then statement embedded in the R-

construct.)

Insert Figure 2 about here.

Insert Table 1 about here.

Insert Table 2 about here.

However, as a matter of fact, the situation for choosing between the W- and R-

constructs is sometimes more subtle than it may appear to be at the first blush. For

example, the problem shown in Table 3 seems to be neutral with respect to either the W-

construct or the R-construct, because the choice of either W- or R-construct will only differ

in the resulting programs only in the position of the test for iteration termination; hereafter

this kind of problem will be referred as NE-problems for Neutral Easy. On the other hand,

6

for the problem shown in Table 4, both W- and R-constructs seorn to be awkward, because

it will require either a duplicate of the termination condition test or a duplicate of an action.

Hereafter, this kind of problem will be referred as NH-probloms for Neutral Hard. In fact,

the problem given in Table 4 is a typical middle-out looping problem which implies that the

most natural iterative construct for implementing it is to have the termination condition test in

the middle of the loop, as illustrated by its flowchart in Figure 3. For middle-out looping

problems, one way to program them is to use the goto statement, as demonstrated in

Figure 4. Nevertheless, although that PASCAL does offer the goto statement and that

sometimes using it wisely does not violate the constraints for a well-structured program,

most PASCAL programmers do not like to use the goto statement at all. Therefore, in this

study we will not consider this option either.' However, while planning their programs by

drawing flowcharts it is quite possible that programmers use the midd~e-out looping

strategy, corresponding to using the goto statement; hereafter, we will denote this strategy

as G-strategy. The looping strategies corresponding to using the R- and W-constructs will

be denoted as R- and W-strategies respectively.

Insert Table 3 about here.

Insert Table 4 about here.

Insert Figure 3 about here.

Since Dijkstra [1968] pointed out that the goto statement is not appropriate for structured

programming, whether or not the goto statement should be used any further has been a
rather controversial issue in programming [Knuth, 1974]. Nowadays, treatments on that topic
by typical textbooks on introductory programming in PASCAL vary very widely, ranging from
introducing the goto statement in the text while at the same time offering advice to use it
cautiously [e.g., Findiay & Watt, 1987], through only introducing it as an extra topic in a')pendix
[e.g., Etter, 1988], to "deliberately omitting" any discussion about it [e.g., Martin, 1989].

Insert Figure 4 about here.

EXPERIMENT 1: FREE CHOICES OF

ITERATIVE STRATEGIES IN PASCAL PROGRAMMING

As stated earlier, three experiments were conducted for this study. The aim of this first

experiment was to see how PASCAL programmers chose different looping strategies on

different types of problems in planning and in programming. Therefore, in this experiment

subjects were free to choose among the W-, R-, and G-strategies when planning, and

between the W- and R-strategies while programming.

Method

Subjects. The 20 subjects participated in this experiment were from the CMU

(Carnegie Mellon University) community; among them 2 were undergraduates, 14 were

graduates, and 4 were research assistants. The subjects were reimbursed for participating

in the experiment. Although all of them learned PASCAL before taking part in the

experience, their experience with it was different from one another, ranging from only

having taken an introductory programming course in PASCAL to having done a lot of

practical programming experience in PASCAL.

Materials. There were 13 different problems used in this experiment. Among them 4

were classified as W-problems, 4 as R-problems, 3 as NE-problems, and 2 as NH-

problems (so 5 N-problems in total).' The first 9 subjects only solved 8 problems -- namely,

3NE+2NH+2W+1R (this is the order in which the problems were presented to the

subjects); and the rest 11 subjects completed all the 13 problems -- namely,

2 All these problems can be obtained by writing to the authors.

3NE+2NH+4W+4R (also in the order of presentation).

Procedure. Before the experiment actually began, each subject was asked to fill out a

questionnaire form. The form was mainly intended to collect some information about the

subjects, such as their positions and affiliations at CMU, their GRE or SAT scores if known,

and their self-ratings of programming experience in different languages. For the self-rating

of programming experience, the subjects were asked to rate along a scale from zero to five,

for each language which they had mastered, according to their own confidence in that

language. There were 11 subjects who filled in GRE math scores and 2 subjects who filled

in SAT math scores; and the average math scores across both the 11 GRE and 2 SAT

scores are 754. Subject's self-ratings of their experience in PASCAL programming range

from 2 to 5, and across all the 20 subjects the average is 3.8.

There were two sessions of the experiment for each subject. In the first session,

subjects completed either 7 (for those who finished 13 in total) or 4 problems (for those who

finished 8 in total); and in the second session, either 6 or 4. In each session, each subject

was first asked to draw flowcharts for all the problems to be solved in that session. While

drawing flowcharts for the problems, the subjects were explicitly instructed not to think in

PASCAL or in any other programming languages. (Most of our subjects had never

experienced drawing flowcharts before; however, by looking at a simple flowchart example

no one seemed to have difficult in drawing flowcharts.) Only after the subjects finished

drawing flowcharts for all the problems did they begin to write PASCAL programs for these

problems. All their flowcharts and the first drafts of their PASCAL programs were worked

out on paper. When the first draft of the program was finished, the subjects were required to

type in the program to the Macintosh II computer and then use the LightSpeed PASCAL

version to test it. They had to debug, if needed, the programs until they yielded the correct

results which were required by the experimenter; sometimes, the experimenter provided

necessary consultation on PASCAL syntax or about the details of the special PASCAL

version. The subjects were not allowed to look at their flowcharts while they were

9

programming; neither were they permitted to access to their solutions on the previous

problems when they were on a later problem. While the subjects were doing paper work or

working on the computer, they were accompanied by the experimenter; the time they spent

on each problem was measured and recorded by the experimenter. For 10 of the 20

subjects, concurrent verbal protocols were taken through the whole experimental sessions.

(Among them, 5 finished 8 problems totally; and the other 5 finished 13.)

Results

The three looping strategies -- namely, the W-, R-, and G-strategies -- were all

exhibited in subject's flowcharts. On the other hand, while programming in PASCAL,

subjects were explicitly advised to only use either the W- or R-construct; therefore, only two

kinds of looping strategies, corresponding to the two looping constructs, are there

manifested in their PASCAL programs? Among the 20 subjects who participated in this

experiment, 3 subjects overwhelmingly used the W-strategy in programming (all of them did

13 problems, and on all the 13 problems they used that strategy), and one subject overused

the R-strategy (he completed 8 problems; and on 7 of them, including the 2 W-problems, he

used the R-strategy). Here we are only interested in the general pattern of the data from the

subjects that varied their use of programming constructs, so these subjects are excluded

from the data analysis in this results section. That is, only the data from 16 subjects are

analyzed in the following.

Insert Figure 5 about here.

Figure 5 shows the distributions of different strategies chosen by subjects on different

categories of problems, classified by their natures, both in planning and in programming.

' (Actually, most subjects did not ask whether they were allowed to use the goto statement
and they did not use it; only very few asked, in which case, they were told by the experimenter
to avoid using it.)

10

Three separate one-way analyses of variance (ANOVAs) were performed on the data for

the three different strategies in planning. The statistical results showed that the effects due

to the nature of problem were significant, as for W-strategy: F(3, 45) = 4.43, p < .01; for R-

strategy: F(3, 45) = 13.06, p < 0.001; and for G-strategy: F(3, 45) = 30.23, p < 0.001.

Another one-way ANOVA was performed on the data for the W-strategy in programming;

the results also revealed significant effects due to the nature of problem, F(3, 45) = 17.96, p

< 0.001. The results seen displayed in the figure are as follows: In planning, the W-

strategy is a not the preferred strategy for most subjects on any kind of problem; the R-

strategy is highly chosen on R- and NE-problems; and the G-strategy is favored on W- and

NH-problems. On the other hand, in programming, the W-strategy is dominant for the W-

problems; the R-strategy is dominant for the R-problems; however, neither strategy is

dominant for the NE- or NH-problems.

By studying the pattern of the strategies chosen by subjects in the planning phase, we

can deduce that what are the natural looping strategies on what types of problems,

irrespective to any programming language. Therefore, from the above presented results, it

seems t.,at the G-strategy is natural on the W- and NH-problems, while the R-strategy is

natural on the R- and NE-problems. On the other hand, by studying the pattern of

strategies exhibited in programming, we are indeed confirming the hypothesis that most

PASCAL programmers are very sensitive to the nature of the problems being programmed

and quite adaptable in choosing corresponding and suitable looping strategies in PASCAL

iterative programming.

Discussion

Our results from this experiment are consistent with the conclusions drawn in the

study done by Soloway et al (1983). The averaging problem with the sentinel value 99999

used in their study would be classified as a NH-problem in our study -- namely, a middle-

out looping problem. The data from this experiment indicate that the percentage of

11

choosing the G-strategy on that type of problems in planning is overwhelmingly high. In

fact, the G-strategy here is what they referred as READ/PROCESS looping strategy in their

study, that is, a strategy characterized by the following plan schema:

loop

do begin

Read (i th value)

Test (i th value)

Process (i th value)

end

as explained in Soloway et al. (1983). Their results also indicate that PASCAL does not

seem to cognitively facilitate the implementation of this kind of looping strategy; therefore,

novice programmers usually have difficulty with this class of problems when facing a choice

among looping constructs in PASCAL.

Our results from this experiment seem to demonstrate that most of our subjects are

quite adaptable in choosing appropriate looping strategies are quite high. Compared to

Soloway et al study, the subjects involved in our study may be relatively more skillful in

PASCAL programming. (The subjects in their study were all in an introductory course on

PASCAL programming whereas our subjects were generally more advanced.) Let's take a

close look at the correlation between ability and adaptability. Subject's experience in

PASCAL can be given by two measures -- namely, subject's total problem solving times

and their self-ratings of PASCAL knowledge.4 As the result of the data analysis, we see

that subject's self-ratings of their PASCAL programming skill are rather subjective and are

unrelated to their problem-solving times (the correlation coefficient is -0.058); therefore, we

used the time measure as the more objective one between the two measures. The

adaptability is defined as the proportion of the number of the W- and R-problems on which

subject's chosen strategies are consistent with the natures of the problems to the total

number of these two classes of problems. The data analysis revealed that the correlation

4 Due to the fact that 9 subjects in this experiment only finished 8 problems, in the data
analysis we only summed over these 8 problems for all the subjects, regardless whether they
finished 8 or 13 problems, to calculate their total problem solving times. Also, the total problem
solving time does not include the time spent on drawing flowcharts for these problems.

12

coefficient between the adaptability and self-rating was 0.137, that between the adaptability

and time measure is -0.121, and that between adaptability and GRE math scores is -0.147.

ThLus, we see that subject's expertise in PASCAL programming does not correlate with their

adaptabilities of choosing looping strategies very strongly.

EXPERIMENT 2: FORCED CHOICES OF

ITERATIVE STRATEGIES IN PASCAL PROGRAMMING

This second experiment was designed to gather further evidence for our conclusion

drawn earlier -- that is, most PASCAL programmers are very adaptable in choosing

appropriate looping strategies according to the nature of the problems being programmed.

Following this, it is reasonable to hypothesize that if PASCAL programmers are forced to

use a looping strategy which is incompatible with the nature of the problems for

programming then their performance will be hampered in some way. This is essentially the

hypothesis that the present experiment was intended to test.

Method

Subjects. As in Experiment 1, all the 24 subjects involved in this experiment were

also from the CMU community, among them 14 undergraduates, 8 graduates, and 2

research assistants. The subjects were reimbursed for their participation in the experiment.

Insert Table 5 about here.

Design. There were three conditions in this experiment, with 8 subjects in each

condition. The design of the experiment (Table 5) was that subjects were either forced to

use the R- (Group 1) or W-strategy (Group 2) on all the problems or forced to use the

13

strategies which were incompatible with the natures of the problems -- namely, to use the

W-strategy on R-problems and R-strategy on W-problems (Group 3). Furthermore, we

selected the 8 subjects in Experiment 1 who finished all the 13 problems and for whom we

knew their GRE/SAT math scores to make up an additional condition (Group 4), that is, a

condition in which subjects were free to choose either the W- or R-strategy on all kinds of

problems. As seen from Table 5, on the N-problems the first two groups were forced to use

the R- and W-strategies respectively, whereas the other two groups were free to use either

the R- or W-strategy. According to this design, we would hypothesize that subjects who

used the W-strategy on R-problems would spend more programming time than those who

used the R-strategy on these R-problems, and that subjects who used the R-strategy on W-

problems would spend more time than those who used the W-strategy on these W-

problems. We would also hypothesize that on the N-problems these four groups of subjects

would not differ very much in their performance. The 24 subjects in this experiment were

randomly assigned to the three original experimental conditions; Table 6 presents the

descriptions of these three different groups of subjects, along with the group consisting of

the 8 subjects from Experiment 1, of their GRE/SAT quantitative scores and self-ratings of

their PASCAL knowledge averaged over the subjects within each group. From the figure

we see that subjects in the four conditions are fairly closely matched.

Insert Table 6 about here.

Materials. The same 13 problems as used in Experiment 1were used in this

experiment.

Procedure. The same procedure as used in Experiment 1 was followed here. That is,

there were two sessions of experiment: in the first session, each subject completed 7

problems; and in the second session, 6 problems. In each session, the subject first did

planning then embarked on actual programming. Most of the subjects were accompanied

14

by the experimenter when they were engaged in experimental sessions, but only for 3

subjects (one in each group) concurrent verbal protocols were collected.

Results

As in Experiment 1, in the planning phase, there was no constraint on how subjects

drew their flowcharts; accordingly, we could expect that the pattern of strategies chosen in

planning phase would not differ from that obtained in Experiment 1 in any significant sense.

In fact, this seems true as we present the results from this experiments in Figure 6 in the

same way as we showed the data from Experiment 1 in Figure 5. Here three separate

ANOVAs were also performed on the data for the three different types of looping strategies,

respectively. The statistics also revealed significant effects due to the nature of problem;

that is, for W-strategy, F(3, 69) = 6.06, p < .001; for R-strategy, F(3, 69) - 74.79, p < .001; and

for G-strategy, F(3, 69) = 77.74, p < 0.001.

Insert Figure 6 about here.

Insert Figure 7 about here.

To verify the hypothesis mentioned in the design of this experiment, we used the time

measure -- namely, the programming time spent by different groups of subjects on different

types of problems. The average times of our four groups of subjects are displayed in Figure

7. A two-way ANOVA was performed on the data; the results indicated that the effect due to

the nature of problem was statistically significant, F(2, 14) = 45.29, p < .001; the effect due to

the difference among the four groups of subjects was also significant, F(3, 21) = 23.24, p <

.001; and the interaction between them was significant F(6, 42) - 52.25, p < .001. As seen

from the figure, the data indicate that subjects had advantages when they used the strategy

15

which was compatible with the nature of the problems in a class. More specifically, subjects

who used the W-strategy on the R-problems spent more time than those who used the R-

strategy on these R-problems, and subjects who used the R-strategy on the W-problems

spent more time than those who used the W-strategy on these W-problems. When subjects

were free to choose they were as fast as subjects who were required to use approriate

strategy in solving the problems.

EXPERIMENT 3: INDUCED CHOICES OF

ITERATIVE STRATEGIES IN PASCAL PROGRAMMING

The purpose of this experiment was also to provide further evidence supporting our

general conclusion on PASCAL programmer's adaptability in choosing looping strategies.

We were also interested in relating the adaptability with Einstellung effect in problem

solving (Luchins & Luchins, 1959). More specifically, the hypothesis being tested in this

experiment was that solving a set of W- or R-problems could have some effect on solving

later problems of neutral nature while having less effect on later solving R or W-problems.

Method

Subjects. As in the previous two experiments the 32 subjects participated in this

experiment were either CMU undergraduates (15 of them), graduates (14), or research

assistants (3). They were reimbursed for taking part in the experiment. They were from

different departments in CMU and had varied experience in PASCAL programming, and

they were randomly assigned to the different conditions of the experimental design.

Insert Table 7 about here.

16

Design. Four conditions were devised in this experiment (accordingly, four groups

of subjects), with 8 subjects in each condition. The different conditions were only different

from one another in the order in which the testing problems were presented to the subjects

(Table 7). The 32 subjects were randomly assigned to these different conditions of the

experimental design. Table 8 provides various descriptive statistics for the four different

groups of subjects; there is little differences among the groups.

Insert Table 8 about here.

The intention of this experimental design was to see whether there were any inducing

or priming effects of having solved a series of problems of one nature upon solving later

problems of another type. For instance, for the subjects in Group W1, after they had solved

a set of W-problems, they solved a set of N-problems and then a set of R-problems. We

were interested in whether any inducing effects would be exhibited on switching from W-

problems to N- and R-problems.

Materials. The 13 problems used in this experiment were the same as those used in

the previous two experiments. The sequences in which they were presented to subjects

were different according to the designated conditions.

Procedure. As in the previous two experiments, before the experiment actually

began, each subject was required to fill out a questionnaire form. However, unlike the

previous experiments, subjects vvere only required to work out flowcharts and PASCAL

programs on paper in this experiment. The correctness of their programs was judged by

the experimenter; if their programs were incorrect then they had to revise them. This

procedural change from the previous experiments to the present one was because we here

were mainly interested in the looping structures of the programs produced by subjects, not

very much in timing subject's problem solving processes. Consequently, although subjects

17

in this experiment were required to record down the time they spent on each problem, the

data of their programming time spent on different types of problems were not as accurate as

what we had in the previous two experiments. 6

Results

Again, as in Experiment 1, there were 5 subjects (5/32= 15.6% of the total subject

population of this experiment) who idiosyncratically overused either the W- or R-strategy

on all the problems. Among these subjects, two used the W-strategy on all 13 problems;

one used the R-strategy on all the problems; and the other two used the R-strategy on 12

problems, including on four W-problems. These subjects were excluded from the following

data analysis. The data from the experiment expressed as the percentage usage of the W-

strategy on the three different types of problems by four groups of subjects are shown in

Figure 8. A two-way ANOVA was performed on the data; the results indicated that

Insert Figure 8 about here.

the effect due to the nature of problem was statistically significant, F(2, 14) = 170.92, p <

.001; the effect due to the different presentation order as for different groups of subjects was

marginally significant, F(3, 21) - 4. 20, p < .02; and the interaction between them was

significant F(6, 42) = 4.62, p < .001. As seen from Figure 8, the pattern of the data seems to

conform to the hypothesis being tested. That is, on the N-problems, subjects from Group

W1, who had used the W-strategy on the previous set of W-problems, tended to use that

strategy more often than those from Group R1. The same data pattern holds for Group W

and Group R in that the immediately preceding problems biased the strategies they chose
r In this experiment, all the subjects were explicitly instructed to use only the W- and R-

constructs. However, one subject, a research assistant, did not follow the instruction very
faithfully and on many problems used the goto statement; this subject was subsequently
replaced by an additional subject recruited. The information this subject stated on the
questionnaire revealed that he was a novice programmer in general; and many of his
programs were badly structured.

18

on the N-problems, although the disparity between these two groups of subjects on the N-

problems is less smaller than that between Group W1 and Group R1. Furthermore, from

the data we also can see that there are no significant effects of having previously exposed

to a set of R-problems upon solving a set of W-problems later, and vice versa.

CONCLUSIONS

In generalizing our conclusion to more general population of PASCAL programmers,

we are aware of the fact that all the subjects involved in this study were from CMU and that

CMU is a relatively highly computer-oriented educational institution among all the

universities and colleges in the world. The typical introductory textbook on PASCAL

programming used at CMU is Miller and Miller (1986) in which both the while-do and

repeat-until statements are Introduced (the former introduced first) and the principle for

judging when to use which is also introduced. Therefore, for those CMU undergraduates

who studied PASCAL at CMU, it is plausible to relate their adaptability of choosing

appropriate looping constructs to their PASCAL learning experience at CMU.

On the other hand, the failure to find a relationship between programming ability and

tendency to be adaptive suggests that our results may not be restricted to high ability

subjects. 6 With some uncertainty about the range of subjects our conclusions may apply to,

we feel that these three experiments have established the following conclusions about

strategies for iterative programming in PASCAL:

1. Independent of any particular programming language, there are two types of

looping strategies most frequently and naturally chosen by people while planning iterative

solutions to the problems being solved. People usually choose the R-strategy if it seems

easier to use it, or choose the G-strategy otherwise.

2. In PASCAL programming, most programmers seem to be very sensitive and

We should note that in each experiment we found a minority of subjects who just used
one programming construct; for these subjects the issue of strategy selection does not arise.

19

adaptable to the nature of the program. They would choose between the W- and R-
0

strategies according to which will produce a concise and well structured program.

3. Adaptability in choosing programming strategy does not seem to be related to the

programmer's ability.

4. When subjects are forced to use a non-preferred strategy their programming

suffers.

5. When the problem does not have a preferred strategy, subjects show tendency to

continue to use the last strategy they used.

The high degree of sensitivity displayed by our subjects to problem characteristics is

consistent with other results from other domains in cognitive psychology (e.g., Reder 1987,

1988; Reder & Ritter, 1990; Siegler & Shrager, 1984) indicating that subjects are highly

adaptive in their strategy choices. Reder (1987, 1988) showed in a different domain,

question-answering, that subject's strategy selection was jointly influenced by the nature of

the problem (question) and by what strategies have recently been used. Our results

showed both effects; however, unlike her, we see that problem nature totally dominates past

experience. This may reflect the fact that the problem nature manipulation in our

experiments was stronger than her manipulation which was recency of information. In more

recent research on arithmetic problem solving, Reder and Ritter (1990) have also found

dominant effects of problem type. Our research is also consistent with the emphasis of

Siegler and Jenkins (1989) on the highly adaptive nature of strategy selection. Therefore,

the pattern of strategy selection seen in these experiments in consistent with results based

on very different populations working in very different domains.

REFERENCES

Dijkstra, E. (1968). GO TO statement considered harmful. Communication of ACM. Vol.

11, No. 3 (November, 1968).

Etter, D. M. (1988). Problem Solving in PASCAL -- for Engineers and Scientists. Menlo

Park, CA: The Benjamin/Cummings Publishing Company, Inc.

20

Findlay, W. & Watt, D. A. (1987). PASCAL: An Introduction to Methodical Programming. (3rd

edition). Rockvill, MA: Computer Science Press.

Gray, W. D. & Anderson, J. R. (1987). Change-episodes in coding: when and how do

programmers change their code? in Olcon, G. M., et al. (eds), Empirical Studies of

Programmers: Second Workshop. New York: Ablex Publishing Corp.

Jensen, K. & Wirth, N. (1974). PASCAL User Manual and Report. New York: Springer-

Berlag.

Katz, I. R. & Anderson, J. R. (1988). Debugging: an analysis of bug-location strategies.

Human-Computer Interaction, Vol. 3, pp. 351-399.

Knuth, D. (1974). Structured programming with GO TO statements. ACM Computing

Surveys. Vol. 6, No. 4. Reprinted in Yeh, R. (1977) (ed.), Current Trends in

Programming Methodology. Englewood Cliffs, NJ: Prentice-Hall.

Luchins, A. S., & Luchins, E. H. (1959). Rigidity of Behavior: A Variational Approach to the

Effects of Einstellung. Eugene, OR: University of Oregon Books.

Martins, J. P. (1989). Iniroduction to Computer Science Using PASCAL. Belmont, CA:

Wadsworth Publishing Company.

Miller, P. L., & Miller, L. W. (1986). Programming by Design: A First Course in Structured

Programming. Pittsburgh, PA: Carnegie Publishing, Inc.

Pennington, N. (1987). Comprehension strategies in Programming. in Olson, G. M., et al

(Eds), Empirical Studies of Programmers: Second Workshop, Ablex Publishing

Corp.: New York.

Reder, L. M. (1987). Strategy selection in question answering. Cognitive Psychology,

19(1), 90-138.

Reder, L. M. (1988). Strategic Control of Retrieval Strategies. In G. Bower (Ed.), The

Psychology of Learning and Motivation, Vol. 21, New York: Academic Press.

Reder, L. M. & Ritter, F. (1990). The effect of feature frequency on feeling of knowing and

strategy selection for arithmetic problems. (to be submitted)

Ruiz, D. & Newell, A. (1989). Tower-noticing triggers strategy-change in the Tower of

Hanoi: a Soar model. The Proceedings of the Eleventh Annual Conference of the

21

Cognitive Science Society. Ann Arbor, Michigan.

Siegler, R. S. & Jenkins, E. A. (1989). How Children Discover New Strategies. Hillsdale, NJ:

Erlbaum.

Siegler, R. S. & Shrager, J. (1984). Strategy Choices in addition and subtraction: How

do children know what to do? In C. Sophian (Ed.), Origins of Cognitive Skills.

Hillsdale, NJ: Erlbaum.

Simon, H. A. (1978). What the knower knows: Alternative strategies for problem solving

tasks. In Klix, F. (ed.), Human and Artificial Intelligence. Berlin: VEB Deutscher verlag

der Wissenschaften.

Simon, H. A. & Reed, S. K. (1976). Modeling strategy shifts in a problem-solving task.

Cognitive Psychology, Vol. 8, pp. 86-97.

Soloway, E.(1986). Leaming to program = learning to construct mechanisms and

explanations. Communication of ACM. Vol. 29, No. 9 (September, 1986).

Soloway, E., Bonar, J., & Ehriich, K.(1982). What do novices know about programming? in

Shneiderman, B. & Badre, A. (Eds), Directions in Human-Computer Interactions, New

York: Ablex Publishing Co.

Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive strategies and looping constructs:

an empirical study. Communication of ACM. Vol. 26, No. 11 (November, 1983).

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE

Transactions on Software Engineering. Vol. SE-10, No. 5 (September, 1984).

22

TABLE 1.

An examplar W.problem which is more naturally solved by using W looping construct.

Problem statement

Write a program which copies a part of an input file into an output file. The input file is structured

as follows:

Name- I Integer- I

Name-2 Integer-2

Name-n Integer-n

'END' Integer-(n+l)

Copy the file until the 'END' is reached (NOT including the item 'END').

A model W-solution A model R-solution

program ExampleProgl.l program ExampleProgl.2

type type

Entry = record Entry = record

Name: packed array[1..31 of char; Name: packed array[l..31 of char;

Number: integer Number: integer

end; end;

var var

InputFile, OutputFile: file of Entry; InputFile, OutputFile: file of Entry;

Temp: Entry; Temp: Entry;

begin begin

Reset(InputFile); Reset(Inputfile);

Rewrite(OutputFile); Rewrite(Outputfile);

while InputFile .Namt<,>'END' do repeat

begin Read(InputFile, Temp);

Read(InputFile, Temp); if Temp.Name<>'END' then

Write(OutputFile, Temp) Write(OutputFile, Temp)

end until Temp.Name='END'

end. end.

TABLE 2.

An examplar R.problem which is more naturally solved by using R looping construct.

Problem statement

Write a program which copies a part of an input file into an output file. The input file is structured

as follows:

Name- I Integer- I

Name-2 Integer-2

Name-n Integer-n

'SUM' Integer-(n+l)

Copy the file until the 'SUM' is reached (including the item 'SUM').

A model R-solution A model W-solution

program ExampleProg2.1 program ExampleProg2.2

type type

Entry = record Entry = record

Name: packed array[l..3] of char; Name: packed array[l..31 of char;

Number: integer Number: integer

end; end;

var var

InputFile, OutputFile: file of Entry; InputFile, OutputFile: file of Entry;

Teinp: Entry; Temp: Entry;

begin begin

Reset(InputFile); Reset(Inputfile);

Rewrite(OutputFile); Rewrite(Outputfile);

repeat Temp.Name:='NOT';

Read(InputFile, Temp); while Temp.Name<>'SUM' do

Write(OutputFile, Temp) begin

until Temp.Name ='SUM' Read(InputFile, Temp);

end. Write(OutputFile, Temp)

end

end.

TABLE 3.

An examplar NE-problem which is neutral with respect to either the

W or R looping construct, and can be easily solved in either construct.

Problem statement

Write a program to read in a series of integers until their sum is greater than 10000 (It is assumed that each
integer in the series is less than 10000). This program should also calculate the average of the integers

which have been read in.

A model W-solution A model R-solution

program ExampleProg3.1 program ExampleProg3.2

var var

Number, Sum, Count: integer; Number, Sum, Count: integer;

begin begin

Sum:=O; Sum:=O;

Count:=O; Count:=O;

while Sum<=10000 do repeat

begin Read(Number);

Read(Number); Sum:=Sum+Number;

Sum:=Sum+Number; Count:=Count+l

Count:=Count+l until Sum>10000;

end; writeln('Sum=', Sum);
writeln('Sum=', Sum); writeln('Average=', Sum/Count)

writeln('Average=', Sum/Count) end.

end.

TABLE 4.

An examplar NH-problem which is neutral with respect to either

the W or R looping construct, but hard to be solved in either.

Problem statement

Write a program which interactively reads in a month number. That is, the program is expected to get a

number in the ranger of I through 12. If the value obtained from the input is out of the range, then an

appropriate message should be displayed and an additional value should be inputted. This process goes

on until a correct month number is obtained, then the correct number is to be displayed.

A model W-solution A model R-solu''on

program ExampleProg4.1 program ExampleProg4.2

var var

Month: integer; Month: integer;

begin begin

Write('Input a month number:'); Write('Input a month number:');

Readin{,',onth); repeat

while (Month<l) or (Month>12) do Readln(Month);

begin if not Month in [1..12] then

Write('Bad input, try again:'); Write('Bad input, try again:');

Readln(Month) until Month in [1..12];

end; Writeln('Correct input:', Month)

Writeln('Correct input:', Month) end.

end.

TABLE 5.

The design of Experiment 2

on forcing subjects to use predetermined W. or R- looping strategies.

Problems The sequence of the problems

5 N-problems 4 W-problems 4 R-problems

Conditions Looping constructs forced to use in the experiment

Group I R R R

Group 2 W W W

Group 3 Free R W

Group 4 Free Free Free

(Group 4 consists of 8 subjects from Experiment 1)

TABLE 6.

The differences among four groups of subjects involved in Experiment 2.

No. of No. of No. of Averaged Self-ratings
Conditions Undergraduate Graduate Res. Assitant GRE/SAT of PASCAL

Subjects Subjects Subjects Quan. Scores knowledge

Group 1 3 3 2 708.0 4.25

Group 2 5 3 0 720.0 4.13

Group 3 6 2 0 723.8 4.00

Group 4 2 5 1 743.8 3.88

TABLE 7.

The design of Experiment 3 on inducing subjects

to use either the W or R looping construct.

Conditions The sequence of the problems to be presented to subjects

Group W W W W W N N N N N R R R R

GroupRI R R R R N N N NN W W W W

GroupW W W W W R R R R N N N N N

GroupR R R R R W W W W N N N N N

TABLE 8.

The differences among four groups of subjects involved in Experiment 3.

No. of No. of No. of Averaged Self-ratings
Conditions Undergraduate Graduate Res. Assitant GRE/SAT of PASCAL

Subjects Subjects Subjects Quan. Scores knowledge

Group W1 4 4 0 712.5 3.25

Group R1 3 4 1 756.0 3.88

Group W 4 3 1 738.0 3.88

Group R 4 3 1 734.1 3.88

Do ACTIONseDoACIO

True

I:= I+ 1
Do ACTION Test CONDTO

Definite looping Indefinite looping

for I= Si to S2 while CONDITION repeat ACTION

do ACTION do ACTION until CONDITION

(F-construct) (W-construct) (R-construct)

FIGURE 1. Three types of iterative constructs
facilitated by PASCAL programming language.

Conversion from W- to R-iteration

TrueuTest CONDITION

False TFus

if CONDITION then
while CONDITION do reatATO

ACIO; until not CONDITION;

Conversion from R to W-iteration

SDo ACTION;

repea ACTION;
while not CONDITION do

whileL I CNIINdreatACTION;

until CONDITION;; unti ON;

FIGURE 2. The transformation between
a W-iterative program and a RRiterative program.

Read a month number]

F Print error messagePrn"Cret

FIGURE 3. A model flowchart for the examplar NH-problem shown in Table 4

-- a typical middle-out looping structure.

Tu T Ae t OND [-Do AC TION I

Fi;D ACTION I

Falle Fasse Falsse

Middle-out looping ••~

Its implementation by Its implementation in Its implementation in

using "goto" statements: "W"' construct: "R" construct:

LI: ACTIONI; ACTIONI: repeat

if CONDITION while CONDITION do ACTIONI;

then goto L2; begin if not CONDI .ION

ACTION2; ACTION2; then ACTION2;

goto LI; ACTIONI until CONDITION;

L2: end;
(G strategy) (W strategy) (G strategy)

FIGURE 4. Middle-out looping and its implemention by using
either the W or R construct.

Strategies in Plans Strategies in Programs

80.. W-Strategy 100

.. R-Strategy [czt" W-Strategy

60 .-- G-Strategy 80[Sateg

.S 60
S40-

S40

-20 -20

0 0
W R NSE NH- V) I NIE N14!

Nature of Problems Nature of Problems

FIGURE 5. The structures (or strategies) manifested in the subject's

plans and programs in Experiment 1.

Strategies in All Plans in Exp2

1.0-
-0- AII-W-Str

0.8 - AII-R-Str
< . • All-G-Str

•- 0.6

S0.4

o0.2

0.0 1,

W R NE NH

Nature of Problems

FIGURE 6. The looping strategies manifested in the plans written

by the subjects from the three groups in Experiment 2.

30
-o- Group 1- R
• - Group 2 - W

Group3 - W & R25--- Group 4 - Free

20

f 15-

10
N W R

Nature of Problems

FIGURE 7. The time spent by the subjects in Experiment 2 while they were forced

to use predetermined looping constructs with a comparison to the time spent by 8

subjects in Experiment 1 (Group 4) while they were free to choose looping constructs.

Group WI & RI Group W & R
1.0- -c- Group Rl--W] 1.0- -cý. Group R-- W

--e- Group W1 W -o.Group W --W
S0.8 0.8-

S0.6 0.6

g 0.4 0.4-

o0.2 - 0.2-

0.0 0.0 ,

W R N W R N
Nature of Problems Nature of Problems

NOTE: The problems are not listed in the order of presentation in the experiment.

FIGURE 8. The structures (or strategies) manifested in the subject's programs in

Experiment 3 while they were induced to use particluar types of looping constructs.

